Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3–6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10–80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.more » « less
- 
            Abstract Analyses of atmospheric heat and moisture budgets serve as an effective tool to study convective characteristics over a region and to provide large‐scale forcing fields for various modeling applications. This paper examines two popular methods for computing large‐scale atmospheric budgets: the conventional budget method (CBM) using objectively gridded analyses based primarily on radiosonde data and the constrained variational analysis (CVA) approach which supplements vertical profiles of atmospheric fields with measurements at the top of the atmosphere and at the surface to conserve mass, water, energy, and momentum. Successful budget computations are dependent on accurate sampling and analyses of the thermodynamic state of the atmosphere and the divergence field associated with convection and the large‐scale circulation that influences it. Utilizing analyses generated from data taken during Dynamics of the Madden‐Julian Oscillation (DYNAMO) field campaign conducted over the central Indian Ocean from October to December 2011, we evaluate the merits of these budget approaches and examine their limitations. While many of the shortcomings of the CBM, in particular effects of sampling errors in sounding data, are effectively minimized with CVA, accurate large‐scale diagnostics in CVA are dependent on reliable background fields and rainfall constraints. For the DYNAMO analyses examined, the operational model fields used as the CVA background state provided wind fields that accurately resolved the vertical structure of convection in the vicinity of Gan Island. However, biases in the model thermodynamic fields were somewhat amplified in CVA resulting in a convective environment much weaker than observed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
